Dr. Sankarprasad Bhuniya

 

Associate Professor

Centre for Interdisciplinary Sciences

JIS Institute of Advanced Studies and Research (JISIASR), Kolkata

Email: spbhuniya@gmail.com

Google Scholar:  https://tinyurl.com/y5f95oh5

Ph.D: IIT Kharagpur, India

M.Sc.: IIT Kharagpur, India

 

Professional Engagements:
2014 – 2020: Research Professor, Amrita Centre for Industrial Research & Innovation, Department of Chemical Engineering and Materials Science, Amrita Vishwa Vidyapeetham, Tamil Nadu, India

2013 – 2014: Division of MR Research, Korea Basic Science Institute, S. Korea

2009 – 2013: Department of Chemistry, Korea University, S. Korea

2007 – 2009: GVK Biosciences Pvt. Ltd. India

2006(July) – 2006(December): IIT, Chicago, USA

2003 – 2006: POSTECH, S. Korea

2001 – 2003:  ATIRA, Ahmedabad

2000 – 2001: Universal Agro Chem. Industries, Kolkata, India

 

Research Topics:

Polymer; MR-Imaging, Drug delivery, Sensors, Bioimaging

 

Current Research

Currently our research team is devoted to develop various organic fluorescent probes for early diagnosis of diseases including cancer theranostic, Alzheimer and MRI guided therapy etc.

Awards

GATE 99.51 percentile (1995, 10th rank in India);

CSIR qualified (JRF, 1994)

Brain Pool fellow:  National Research Foundation –Republic of Korea in the year of 2018

 

Research Focus:
Stimulating Paramagnetic (TI-weighted) Hybrid Material as Multi Model Theranostic for Tumor Hypoxia

Hypoxia is the pre-metastasis condition of all types of cancers, where the low oxygen conditions (≤ 3.0%) minimized activity of chemotherapeutics or radiotherapy against cancer depression. Thus, the mortality rate is highest in comparison to any type of cancer. Upper acidic features and expression of tumor resistance parameters make them almost incurable. Even though many hypoxia-activated prodrugs (HAP) are in the advanced stage of the clinical trial; however, yet FDA has not approved them because of the server cytotoxicity against healthy cells. In this undertaken study, a paramagnetic polymer hybrid nano-device will develop by judicious selection of suitable chemical architectures. It can interact with overexpressed endogenous reductase enzymes in hypoxic tumors. Consequently, Nano device will be disintegrated to facilitate chemotherapeutic release. The sequential ‘turn- on’ visual (fluorescence) and T1- MR modalities of the nano-delivery system will provide the information on the real-time of drug release and its activation. At the same time, at the variable magnetic field, hyperthermia will show synergism with chemotherapy to get a maximum clinical benefit. Finally, it will provide real-time feedback on the efficacy of targeted therapeutic interventions by multi-modal readouts such as optical and MR (T1/T2) signal; the theranostic nanomedicines can be used to facilitate (pre-) clinical efficacy analysis, and to approach personalized medicine. It is a unique strategy; MRI can activate drug release and concurrently monitor tumor suppression noninvasively.

Schematic presentation: MRI (T1- weighted) Modulated tumor hypoxia therapy and

Monitoring of tumor suppression by MRI.

 

Bioimaging and Fluorescent Sensor

The countless interaction in a controlled manner among the molecules inside the living species is the currency of life.  The chemists are motivated to develop chemo-selective molecular probes to unfold the biochemical interaction among the molecules in various biological processes in live specimens. It also can provide interactive information on biochemical reactions. Being, very inexpensive tool, the fluorescence modality extensively used to get cellular or subcellular information. This modality can provide spatiotemporal information on various short-life species in live cells without any considerable interference. But the hardest challenge is to develop a highly chemoselective probe which can react with target species within the complex biological environment. We are group is interested to develop chemoselctive probe for disease diagnosis and unfold biological events in cellular and subcellular levels.

Small Molecular Theranostics

Theranostic is a smart flagship in nanomedicine with concurrent and complementary diagnostic and therapeutic capabilities. Commonly, magnetic particles, mesoporous silica, carbon and polymer naonparticles are deployed to develop theranostic systems. The small molecular theranostic produrg is a new paradigm in nanomedicine that composed with fluorophores as optical reporters have become attractive to monitor the drug delivery and release process since their fluorescence signals can be activated concomitantly with drug release. Thus small molecular theranostic prodrug could be enabled to provide real time information on drug release and its process.

 Sponsored Projects (completed):

Years Funding Agency Title of Project Amount of Grant Role
2016 – 2019 DST-SERB

(India)

Design and Synthesis of Organelle Specific Reactive Fluorescent Probes for Chemoselective Bioimaging 36.4 lakh (INR) PI

Ongoing Projects

On Going

Years Funding Agency Title of Project Amount of Grant Role
28th June 2019 – 2022 CSIR

(India)

Development of Endogenous H2S Triggered Fluorescence Modulated Theranostic in Cancer Therapy and Imaging 24.0 lakh (INR) PI

Including revised JRF salary

On Going

Years Funding Agency Title of Project Amount of Grant Role
 2 years (15th Feb 2020-2022)  DST-RFBR

 

Polysaccharide-based Activatable Vesicle for Programmed Delivery of Chemotherapeutics to the colon cancer 31.1 lakh PI

On Going

Years Funding Agency Title of Project Amount of Grant Role
 3 years (20th Feb 2020-23)  SERB (core grant)

 

Stimulating Paramagnetic (T1-Weighted) GO-Polymeric Hybrid Material as Multimodal Theranostic for Tumor Hypoxia- A Clinically Viable Study 53.32 lakh PI

 

Ph.D. Supervision

Awarded: 03

  1. i) Dr. Kondapa Naidu Bobba; Title of the thesis: Development of fluorescent Probes for reactive species and their application in theranostic.

(ii) Nithya Velusamy, Title of the thesis: development of Fluorescent Probes for Hydrogen sulfide and Their Application for Bioimaging

(iii) Arup Podder: Title of the Thesis: Development of Fluorescent Probes for Phosphatase and pH and their application in Bioimaging

  1. Tech. thesis supervision as co-advisor: 4

 

 

Patents:
1. Kim, J. S.; Bhuniya, S.; Lee, S.; Hong, K.-S.; Lee, H and Moon, H., Uridine-based gadolinium complex, method for manufacturing the same, and MRI contrast agent comprising the complex. Kor. Patent No KR 2012107541.

  1. Kim, J. S.; Bhuniya, S.; Lee, S.; Hong, K.-S.; Lee, H and Moon, H., Preparation of uridine-based gadolinium complexes as MRI contrasts agents, US Pat. 9,290,535 B2, March 22, 2016.
  2. Bhuniya, S. Mishra, S.; Velusamy, N.; Bobba, KN; Anupama, B. Divya, N., Mitochondrial fluorescent probe as cancer cells marker, Indian Pat file: 201741013739.
  3. Bhuniya, S. Mishra, S.; Velusamy, N.; Bobba, KN; Anupama, B. Divya, N. Fluorescent exomarker probes for hydrogen sulfide detection, US Pat 10, 502, 742 B2 19th Dec. 2019.

 

Journal Publications:

  1. Kim, S.Y.; Podder, A.; Lee, H.; Cho, Y.-J.; Han, E. H.; Khatun, S.; Sessler, J.; Hong, K. S.; Bhuniya, S. “Self-assembled amphiphilic fluorescent probe: detecting pH-fluctuations within cancer cells and tumor tissues, Journal of Medicinal Chemistry under revision
  2. Podder, A.; Murali, V.; Deepika, S.; Dhamija, A.; Biswas, S.; Maiti, K.; Bhuniya, S. NADH-Activated dual-channel fluorescent probe for multicolor labeling of live cells and tumor mimic spheroid. Analytical Chemistry- under revision
  3. Khatun, S.; yang, S.; Zhao, Y. Q.; Podder, A,; Zhou, Y.; Bhuniya, S. Highly Chemoselective Self-calibrated Fluorescent Probe Monitors Glutathione Dynamics in Nucleolus in Live Cells, Analytical Chemistry-Accepted(DOI: 10.1021/acs.analchem.9b05175)
  4. Khatuna, S. Biswas, S.; Binoy, A.; Podder, A.; Mishra, N. Bhuniya, S. Highly chemoselective turn- on fluorescent probe for ferrous (Fe2+) ion detection in cosmetics and live cells, Journal of Photochemistry and Photobiology B: Biology (2020, ASAP)
  5. Koo, S.; Bobba, K. N.; Cho, M. Y.; Park, H. S.;Won, M.; Velusamy, N.; Hong, K. S.; Bhuniya; S. Kim, J. S.; ACS Applied Bio Materials, 2019. 2, 4648
  6. Maiti, M.; Murali, V. P.; Depika, S.; Podder, A.; Maiti, K. K.; Bhuniya, S. NADH- Induced “kick-on” fluorescent probe validates crosstalk with redox regulator GSH- Sensor Actuator B: Chemical, 2019, 299, 126968(1-8)
  7. Bobba, K. N.; Binoy, A.; Koo, S.; Podder, A.; Mishra, A.; Mishra, N.; Kim, J. S.; Bhuniya, S. Direct readout protonophore induced selective uncoupling and dysfunction of individual mitochondria within the cancer cells, Chemical Communications, 2019, 55, 6429.
  8. Bobba, K. N. ; Saranya, G.; Sujai, P. T.; Joseph, M. M. Velusamy, N.; Podder, A.; Maiti, K. K.; Bhuniya, S. Endogenous H2S Assisted Cancer Cell-specific Activation of Theranostic with Emission Readout. ACS Appl. Bio Mater. 2019, 2, 1322-30
  9. Fredrik, R.; Podder, A.; Viswanathan, A.; Bhuniya, S. Synthesis and characterization of polysaccharide hydrogel based on hydrophobic, interactions, J. Appl. Polym. Sci. 2019, 136(25), 47665(1-7) top 10 downloaded article
  10. Podder, A. Koo, Lee, J.; Mun, S.; Khatun, S.; Kang, H.-G.; Bhuniya, S.; Kim, J. S. Rhodamine based fluorescent probe validates substrate and cellular hypoxia specific NADH expression, Chemical Communications, 2019, 55, 537-540.
  11. Velusamy, N.; Thirumalaivasan, N; Bobba, K. N.; Podder, A.; Wu, S. P.; Bhuniya, S. FRET-based dual channel fluorescent probe for detecting endogenous/exogenous H2O2/H2S formation through multicolor images, Journal of Photochemistry and Photobiology B: Biology- 2019, 191, 99-106.
  12. Rashmi, R.; Nedungadi, D.; Podder, A.; Mishra, N.; Bhuniya, S. Monitoring of topoisomerase (I) inhibitor camptothecin release from endogenous redox-stimulated GO-polymer hybrid carrier, Journal of Photochemistry and Photobiology B: Biology, 2018,177, 105-111
  13. Kim, E.J., Podder, A.; Maiti, M. Lee, J. M.; Chung, B. G.; Bhuniya, S. Selective monitoring of vascular cell senescence via β-galactosidase detection with a fluorescent chemosensor, Sensor Actuator B: Chemical-A, 2018, 274, 194-200.
  14. Zhou, Y.; Maiti, M.; Sharma, A.; Yu, L.; Lv, X. W.; Shin, J.; Won, M.; Han, J.; Podder, A.; Bobba, K. N.; Bhuniya, S.; Kim, J. S., Azo-based small molecular hypoxia responsive theranostic for tumor-specific imaging and therapy, Journal of controlled Release- 2018, 288, 14-22
  15. Podder, A.; Senapati,, S.; Maiti, P.; Kamalraj, D.; Jaffer, S.; S. Khatun, S.; Bhuniya, S. A ‘turn-on’ fluorescent probe for lysosomal phosphatase: A comparative study for labeling of cancer cells, Journal of Materials Chemistry B, 2018, 6, 4514.
  16. Podder, A.; Won, M.; Kim, S.; Verwilst, P.; Maiti, M; Yang, Z.; Qu, J.; and Bhuniya, S.; Kim, J. S., A two-photon fluorescent probe records the intracellular pH through ‘OR’logic operation via internal calibration, Sensor Actuator B: Chemical, 2018, 268, 195.
  17. Velusamy, N.; Thirumalaivasan, N.; Bobba, K. N. Wu, S.-P.; Bhuniya, S. Hydrogen sulfide triggered self-immolative fluorescent probe for lysosomes labeling in live cells, New Journal of Chemistry, 2018, 42, 1590
  18. Bobba, K. N. Saranya, G.; Alex, S. M., Velusamy, N.; Maiti, K. K ; Bhuniya, S. SERS-active multi-channel fluorescent probe for NO: Guide to discriminate intracellular biothiols. – Sensor Actuator B: Chemical, 2018, 260, 165. Page 3 of 6
  19. Podder, A.; Alex, S. M.; Maiti, M; Maiti, K. K.; Bhuniya, S. Self-calibrated fluorescent probe resembled as an indicator of the lysosomal phosphatase pertaining to the cancer cells, Journal of Photochemistry and Photobiology B: Biology, 2017,177, 105-111
  20. Bobba, K. N.; Won, M.; Shim, I. ; Valusamy, N.; Yang, Z.; Qu, j.; Kim, J. S.; Bhuniya, S. BODIPY based Two Photon Fluorescent Probe Validates Tyrosinase Activity in Live Cells, Chemical Communications, 2017, 53, 11213.
  21. Velusamy, N.; Binoy, A.; Bobba, K. N.; Nedungadi, D.; Mishra, N.; Bhuniya, S. A bioorthogonal fluorescent probe for mitochondrial hydrogen sulfide: new strategy for cancer cell labeling, Chemical Communications, 2017, 53, 8802
  22. Sunwoo, K; Bobba, K. N.; Lim, J.-Y.; Park, T.; Podder, A.; Heo, J. S.; Lee, S. W.; Bhuniya, S.; Kim, J. S. “A bioorthogonal turn-on fluorescent probe for tracking mitochondrial nitroxyl formation”, Chemical Communications, 2017, 53, 1723-1726
  23. Dutta, D.; Alex, S. M. Naidu, K. N.; Maiti, K. K; Bhuniya, S., “New insight of cancer theranostic Probe: efficient cell specific delivery of SN-38 guided by biotinylated poly(vinyl alcohol)”, ACS Applied Materials & Interfaces, 2016, 8, 33430-38.
  24. Zhou, Y.; Bobba, K. N.; Lv, X. W.; Yang, D.; Velusamy, N.; Zhang, J. F. and Bhuniya, S., “Biotinylated Piperazine-rhodol Derivative: a ‘turn-on’ probe for nitroreductase triggered hypoxia imaging”, Analyst, 2017, 142, 345-350.
  25. Kumar, R.; Kim, E.-J.; Han, J.; Lee, H.; Shin, W. S.; Kim, H. M.; Bhuniya, S.; Kim, J. S.; Hong, K. S., “Hypoxia-directed and activated theranostic agent: Imaging and treatment of solid tumor”, Biomaterials, 104, 119-128, 2016.
  26. Yasoda, Y; Bobba, K. N.; Nedungadi, D; Dutta, D.; Kumar, M. S.; Kathurkar, N.; Mishra, N; Bhuniya, S., “GSH responsive biotinylated poly(vinyl alcohol) grafted GO as a nanocarrier for targeted delivery of camptothecin”, RSC Advances, 6, 62385-89, 2016.
  27. Kumar, Rajesh, Shin, W. S.; Sunwoo, K.; Kim, W. Y.; Koo, S. Bhuniya, S. and Kim J. S., “Small molecule based theranostic agents: an encouraging approach for cancer therapy”, Chemical Society Reviews, 44, 6670-6683, 2015.
  28. Bobba, K. N; Ying, Z.; Guo, L. E.; Zhang, T. N.; Zhang, J. F.; Bhuniya, S., “Resorufin based fluorescent ‘turn-on’ chemodosimeter probe for nitroxyl (HNO)”. RSC Advances, 5, 84543-46, 2015.
  29. Lee, J. H.; Jang, J. H.; Velusamy, N.; Jung, J. S.; Bhuniya, S.; Kim, J. S. “An intramolecular crossed-benzoin reaction based KCN fluorescent probe in aqueous and biological environments”, Chemical Communications, 51, 7709-7712, 2015.
  30. 35. Bhuniya, S. and Adhikari, B., “Toughening of epoxy resin by novel silicon modified hydroxyl terminated polyurethane oligomer”, Journal of Applied Polymer Science, 90(6), 1497-1506, 2003.

 

Co-author publication

  1. Demina , T. S. ; Birdibekova, A. V. ; Svidchenko, E. A. ; Ivanov, P. L.; Kuryanova, A. S.; Kurkin, T. S.; Khaibullin, Z. I.; Goncharuk, G. P.; Zharikova, T. M.; Bhuniya, S.; Grandfils, C.; Timashev, P. S.; Akopova, T. A. Solid-state synthesis of water-soluble chitosan-g-hydroxyethyl cellulose copolymers. Polymers, 2020, 12(3), 611
  2. Bhuniya, S.; Hong, K.-S., Diagnostic Significance of pH-Responsive Gd3+-Based T1 MR Contrast Agents, Investigative Magnetic Resonance Imaging, 2019, 23, 17-25
  3. Singha, S. Kim, D. Bhuniya, S.; Kumerai, T, Fluorescence analysis: from sensing to Imaging, Journal of Analytical Methods in Chemistry, 2018; ID: Article ID 2654127
  4. Kim, E. J. †, Bhuniya, S. †; Lee, H.; Kim, H. M.; Cho, J.-H.; Shin, W-S.; Kim, J. S. and Hong, K.-S., “In vivo tracking of phagocytic immune cells using a dual imaging probe with gadolinium-enhanced MRI and near-infrared fluorescence” , ACS Applied Materials & Interfaces, 8,10266-10273, 2016. (†Co-first Author)
  5. Kim, E. J.; Bhuniya, S.; Lee, H.; Kim, H. M.; Cheon, C; Maiti, S; Hong, K.-S.; Kim, J. S., “An activatable prodrug for the treatment of metastatic tumors”, Journal of the American Chemical Society, 136, 13888-13894, 2014.
  6. Bhuniya, S.; Maiti, S.; Kim, E. J.; Lee, H.; Sessler, J. L.; Hong, K.-S.; Kim, J. S., “An activatable targeted theranostic for cancer therapy and imaging”, Angewandte Chemie International Edition, 53(17), 4469-4474, 2014.
  7. Jang, J. H.; Bhuniya, S.; Kang, J. Yeom, A.; Hong, K.-S.; Kim, J. S., “Cu2+ induced bimodal (optical/MRI) contrast agent for cellular imaging”, Organic Letters, 15(18), 4702-4705, 2013.
  8. Bhuniya, S.; Lee, M.H.; Jeon, H. M.; Han, J. H., Lee, J. H.; Park, N.; Maiti, S.; Kang, C.; Kim, J. S. ,”Fluorescence off-on reporter for real time monitoring of gemcitabine delivery to the cancer cells”, Chemical Communications, 49, 7141-7143, 2013. Page 4 of 6
  9. Maiti, S.; Park, N.; han, J. H.; Jeon, H. M.; Lee, J. H.; Bhuniya, S.; Kang, C.; Kim, J. S., “Gemcitabine-coumarin-biotin conjugates: A target specific theranostic anti-cancer prodrug.” Journal of the American Chemical Society, 135 (11), 4567-4572, 2013.
  10. Lee, M. H.; Kim, J.Y.; Han, J. H.; Bhuniya, S. Sessler, J. L.; Kang, C.; Kim, J. S. “Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug”, Journal of the American Chemical Society,134 ,12668-12674, 2012.
  11. Park†, J.; Bhuniya†, S.; Lee, H.; Noh, Y.-W.; Lim, Y. T.; Jung, J. H.; Hong, K. S.; Kim, J. S. ” DTTA-ligated uridine-quantum dot (QD) conjugate as a bimodal contrast agent for cellular imaging”, Chemical Communications, 48, 3218-3220, 2012. (†Co-first Author)
  12. Lee, M. H.; Han, J. H.; Kwon, P.-S.; Bhuniya, S.; Kim, J. Y.; Sessler, J.; Kang, C.; Kim, J. S., “A hepatocyte targeting single galactose-appended naphthalimide: A tool for intracellular thiol imaging in vivo”, Journal of the American Chemical Society, 134 (2), 1316-1322, 2012.
  13. Lee, S.; Lee, J. H.; Pradhan, T.; Lim, C. S.; Cho, B. R.; Bhuniya, S.; Kim, S.; Kim, J. S., “Fluorescent turn-on Zn2+ sensing in aqueous and cellular medium”, Sensors and Actuators B, 160 (1), 1489-1493, 2011.
  14. Bhuniya, S.; Moon, H; Lee, H.; Hong, K.-S.; Lee, S.; Yu, D.-Y.; Kim, J. S., “Uridine-based paramagnetic supramolecular nanoaggregate with high relaxivity capable of detecting primitive liver tumor lesions”, Biomaterials, 32 (27), 6533-6540, 2011.
  15. Zhang, J. F.; Lim, C. S.; Bhuniya, S.; Cho, B. R.; Kim, J. S. “A highly selective colorimetric and ratiometric two-photon fluorescent probe for fluoride ion detection”, Organic Letters, 13(18), 4702-4705, 2011.
  16. Ren, W. X.; Bhuniya, S.;Zhang, J. F.; Lee, Y. H.; Lee, S. J.; Kim, J. S. , “New fluorogenic chemodosimetric system for mercury ion recognition”, Tetrahedron Letters, 51 (44), 5784-5786, 2010.
  17. Jung, H. S.; Ko, K. C.; Lee, J. H.; Kim, S. H.; Bhuniya, S.; Lee, J. Y.; Kim, Y.; Kim, S. J.; Kim, J. S., “Rationally designed fluorescence turn-on sensor: a new design strategy based on orbital control”, Inorganic Chemistry,49(18), 8552-8557, 2010.
  18. Zhang, J. F.; Bhuniya, S.; Lee, Y. H.; Bae, C.; Lee, J. H.; Kim, J. S., “Novel 2, 2′-bipyridine-modified calix[4]arenes: ratiometric fluorescent chemosensors for Zn2+ Ion”, Tetrahedron Letters, 51(29), 3719-3723, 2010.
  19. Kim, H. J.; Bhuniya, S.; Mahajan, R. K.; Puri, R.; Liu, H.; Ko, K. C.; Lee, J. Y.; Kim, J. S., Fluorescence turn-on sensors for HSO4-”, Chemical Communications, 46, 7128-7130, 2009.
  20. Seo, Y. J.; Bhuniya, S.; Yi, J. W.; Kim, B. H., “A co-assembled probing system using the homoadenine self-duplex signal”, Tetrahedron Letters, 49 (21), 2701-2703, 2008.
  21. Chong, H.-S., Mhaske, S.; Lin, M.; Bhuniya, S.; Song, H. A.; Brechbiel, M. W.; Sun, X., “Synthetic ligands for targeted PET imaging and radiotherapy of copper”, Bioorganic Medicinal Chemistry Letters, 17(22), 6107-6110, 2007.
  22. Seo, Y. J.; Bhuniya, S.; Tapadar, S.; Jeong, W. Y.; Kim, B. H., Bulletin of the Korean Chemical Society, 28(11), 1923-1924, 2007.
  23. Seo, Y. J.; Bhuniya, S.; Kim, B. H., “Reversible sol-gel signaling system with epMB for the study of enzyme-and pH triggered oligonucleotide release from a biotin hydrogel”, Chemical Communications, (18), 1804-1806, 2007.
  24. Bhuniya, S.; Seo, Y. J.; Kim, B. H., “s)-(+)-Ibuprofen based hydrogelators: an approach toward an anti- inflammatory drug delivery”, Tetrahedron Letters, 47(40), 7153-7156, 2006.
  25. Bhuniya, B.; Kim, B. H., “An insulin sensing sugar based fluorescent hydrogel”, Chemical Communications, (17), 1842-1844, 2006.
  26. Bhuniya, S.; Park, S. M.; Kim, B. H., “Biotin-Amino acid conjugates: an approach toward self-assembled hydrogelation”, Organic letters, 7(9), 1741-1744, 2005.
  27. Bhuniya, S.; Rahman, S.; Satyananda, A. J.; Gharia, M. M.; Dave, A. M.; “A novel route to synthesize allyl starch and synthesis of biodegradable hydrogel by co-polymerizing allyl modified starch with methacrylic Acid and acrylamide”, Journal of Polymer Science, Part A: Polymer Chemistry, 41(11) 1650-1658, 2003.
  28. Bhuniya, S.; Maiti, S., “Heterocyclic based epoxy terminated structural adhesive II. Curing, adhesive strength and thermal stability”, Journal of Applied Polymer Science, 86 (14), 3520-3526, 2002.
  29. Bhuniya, S.; Maiti, S., “Phosphorus based epoxy terminated structural adhesive II. Curing, adhesive strength and thermal stability”, European Polymer Journal, 38(1), 195-201, 2002.
  30. Bhuniya, S.; Maiti, S., “Heterocyclic based epoxy terminated structural adhesive II. Curing, adhesive strength and thermal stability”, Journal of Polymer Materials, 19(4) 395-402, 2002.
  31. 04. Bhuniya, S.; Maiti, S., “Synthesis and characterization of a new epoxy resin”, Journal of Polymer Materials, 15(4), 335-341, 1998. Page 5 of 6
  32. Bhuniya, S.; Maiti, S., “Synthesis and characterization of new epoxy –terminated polymer”, International Journal of Polymeric Materials and Polymeric Biomaterials, 42(1-2), 27-37, 1998.
  33. Bhuniya, S.; Maiti, S. “Synthesis and characterization of epoxy terminated phosphorus containing polymers”, Indian Journal of Chemical Technology,2002, 9(2), 103-111.
  34. Bhuniya, S.; Maiti, “Effect of phosphorus –nitrogen and antimony-nitrogen synergism in the flame retardant behavior of novel epoxy polymer”, Indian Journal of Chemical Society, 77(10), 482-485, 2000.

 

For the complete list of publications, please follow this link: https://tinyurl.com/y5f95oh5